ICSE CLASS9 PHYSICS CHAPTER 3 LAWS OF MOTION

Ex 3C

Numericals

1.  Mass of the body, m = 5kg
     Velocity, v = 2 m/s
     Linear momentum = mv = 5 x 2 kg m/s = 10 kg m/s

2.   Linear momentum = 0.5 kg m/s

      Mass, m = 50 g = 0.05 kg
      Velocity = Linear momentum/mass = 0.5/0.05 m/s  = 10 m/s 

3.   Force, F = 15 N
      Mass, m = 2 kg
      Acceleration, a = F/m [ From Newton's second law]
      a = (15/2) ms-2  = 7.5 ms-2

4.    Force, F = 10 N
       Mass, m = 5 kg
      Acceleration, a = F/m [ From Newton's second law]
      a = (10/5) ms-2  = 2 ms-2

5.    Mass, m = 0.5 kg.
       Acceleration, a = 5 ms-2
       Force, F = ma   [ From Newton's second law]
       F = 0.5 x 5 N = 2.5 N.

6.    Force, F = 10 N
       Mass, m = 2 kg
      Time, t = 3 s
       Initial velocity, u = 0 m/s.

      (i) Let v be the final velocity acquired.
      From Newton's second law, F = ma.
      a = F/m = 10/2 = 5 ms-2.

      From the 1st equation of motion,
      v = u+ at
      v =  0 + 5 x 3  = 15 m/s.

      (ii) Change in momentum = Final momentum - initial momentum
       △p = mv - mu.
       △p = m (v-u).
       △p = 2 ( 15-0) = 30 kg m/s.

7.    Mass, m = 100 kg
       Distance moved, s = 100 m
       Initial velocity, u = 0

       (i) Because the body moves through a distance of 100 m in 5 s,
       Velocity of the body = Distance moved / time taken
       Velocity = (100/5) = 20 m/s

       (ii) From Newton's third equation of motion,
        v =u2 + 2as.
        a = (v-u2) /2s.
        a = [ (202 - 02)/ 2(100) ] ms-2   = 2 ms-2.

        (iii) Force, F = ma
         F = 100 x 2 N = 200 N.

8.      Slope of a velocity-time graph gives the value of acceleration.
         Here, slope = 20/5 = 4 m/s2.
         acceleration, a = 4 m/s2.
         F = MA
         Given mass, m = 100 g = 0.1 kg.
         Force = 0.1 x 4 = 0.4 N.

9.      Mass, m = 2 kg
         Initial velocity, u = 0
         Final velocity, v = 2 m/s
        Time, t = 0.1 s
        Acceleration = Change in velocity/time
        a = (v - u) /t
        a = (2 - 0)/ 0.1 = 20 ms-2.
        Force = Mass  Acceleration
        F = 2 x 20 = 40 N.

10.   Mass, m = 100 g = 0.1 kg.
        Initial velocity, u = 30 m/s.
        Final velocity, v = 0.
        Time, t = 0.03 s.

        Acceleration = Change in velocity/time.
        a = (v - u)/t.
        a = (0 - 30)/ 0.03 = -1000 ms-2. 
        Negative sign indicates retardation.
        Now, Force = Mass  Acceleration
        F = 0.1 x 1000 = 100 N.

11.   Mass, m = 480 kg.
        Initial velocity, u = 54 km/hr = 15 m/s.
        Final velocity, v = 0.
        Time, t = 10 s.

        Acceleration = Change in velocity/time.
        a = (v - u)/t.
        a = (0 - 15)/10 = -1.5 ms-2.
        Negative sign indicates retardation.
        Now, Force = Mass  Acceleration
        F = 480 x 1.5 = 720 N.

12.   Mass, m = 50 gm = 0.05 kg.
        Initial velocity, u = 100 m/s.
        Final velocity, v = 0.
        Distance, s = 2 cm = 0.02 m.
        (i) Initial momentum = mu = 0.05 x 100 = 5 kg m/s.
       (ii) Final momentum = mv =  0.05 x 0 = 0 kg m/s.
       (iii) Acceleration, a = (v- u2)/2s.
              a = (02 - 1002)/ 2 x 0.02 = -2.5 x 105 ms-2.
              Therefore, retardation is 2.5 x 105 ms-2.

        (iv) Force, F = ma
         F = 0.05 x 2.5 x 105 = 12500 N

13.    Let the force be F.
         Force F causes an acceleration, a = 10 m/s2 in a body of mass, m = 500 g or 0.5 kg
         Thus, F = ma
         F = 0.5 x 10 = 5 N
         Let a' be the acceleration which force 5N cause on a body of mass, m' = 5 kg.
         Then, a' = F/m'.
         a' = (5/5) ms-2 = 1 ms-2.

14.    Initial velocity, u = 30 m/s
         Final velocity, v = 0
         Time, t = 2 s
         Force, F = 1500 N
         Here, a = (v - u)/t = (0 -30)/ 2 = -15 ms-2
         Negative sign indicates retardation.
         Now, F = ma.
         m = F/a = (1500/ 15) = 100 kg.

        (a) Change in momentum = Final momentum - Initial momentum
         △p = m (v - u)
         △p= 100 (0 - 30)
         △p= 3000 kg m/s

        (b) Acceleration, a = (v - u)/t.
        a = (0 - 30)/ 2 = -15 ms-2,
        Negative sign indicates retardation.
        Thus, retardation = 15 ms-2.

        (c) From Newton's second law of motion,
         F = ma
         m = F/a = (1500/ 15) = 100 kg.


Ex 3D

Numericals

1.     The wall exerts an equal force of 10 N on the boy in the opposite direction, i.e. west.
2.      (a) A block exerts 15 N force (weight) on the string downwards.
         (b) The string exerts an equal force of 15 N on the block in the opposite direction, i.e. upward
         direction (tension).
         


Ex 3E

Numericals
1.       Force of attraction between two bodies = 10 N


          If the new distance R'= R/2, then let F' be the force acting between the bodies. Then:
   
2.       Weight = mg
          W = 5 x 9.8 = 50 N.
3.       Mass = 10 kg
          (i) Weight (in kgf) = 10 x 1 kgf = 10 kgf  (1 kgf = 9.8 N)
          (ii) Weight (in newton) = 10 x 9.8 = 98 N.
  4.     Mass = 5 kg.
          g = 9.8 m/s2.
          Let F be the force of gravity,
          F = mg.
          F =  5 x 9.8 = 49 N.
          Force of gravity always acts downwards.

5.       Weight, W = 2.0 N
           g = 9.8 m/s
           Let 'm' be the mass of the body.
           W = mg
           m = W/g = (2/9.8) kg = 0.2 kg.

 6.     Weight of the body on Earth = 98 N.
         Acceleration due to gravity on Earth = 9.8 m/s2.
        Let 'm' be the mass of the body on Earth.
        m = W/g
        m = (98/9.8) = 10 kg
        Thus, the mass of the body is 10 kg, which always remains constant.
        (a) Mass on moon = mass on Earth = 10 kg
        (b) Let weight on moon is W'.
        W' = mass   acceleration due to gravity on the Moon.
        W' = 10   1.6 =16 N.
7.     Man's weight on Earth = 600 N
        Man's weight on the Moon = (1/6) man's weight on Earth;
        Because the acceleration due to gravity on the Moon is 1/6th that of Earth and w = mg.
        Therefore, man's weight on Moon = (600/6) = 100 N.

8.     Mass, m = 10.5 kg
        G = 10 m/s2
        (a) Force, F = mg
         F = 10.5 x 10 = 105 N
        (b) Weight, w = mg
         w = 10.5 x 10 = 105 N
 9.     Let 'S' be the height.
         Time taken, t = 3 s
         g = 9.8 m/s2
         Initial velocity, u = 0 
         (a) Using the second equation of motion,
         S = ut + (1/2) gt2
         S = 0 + 1/2 x 9.8 x 3 x 3  = 44.1 m
         (b) Let 'v' be the velocity with which the ball strikes the ground.
         Using the third equation of motion,
         v2   u2 = 2gs
         v2 - 02 = 2 x 9.8 x 44.1 = 864.36
         v = 29.4 m/s

10.    Mass, m = 5kg
         Force, F = mg
         F = 5 x 9.8 = 49 N
11.   Given, maximum height reached, s = 20 m
        Acceleration due to gravity, g = 10 m/s2
        (i) Let 'u' be the initial velocity.
       At the highest point, velocity = 0
       Using the third equation of motion,
       v   u= 2gs
       0   u= 2 x 10 x 20 m/s
       u  400 m/s (Negative sign indicates that the motion is against gravity)
       u = 20 m/s
       (b) Let v' be the final velocity of the ball on reaching the ground.
       Considering the motion from the highest point to ground,
       Velocity at highest point = 0 = Initial velocity for downward journey of the ball.
       Distance travelled, s = 20m
       Using the third equation of motion,
       v  u= 2gs
       v  0 = 2 x10 x 20 m/s
       v= 400 m/s
       v = 420 m/s
       (c) Now total time for which the ball remains in air, t = 2u/g.
       t = 2 x 20 x 10
       t = 4s.

12.  Initial velocity u = 0
       Final velocity = 20 m/s
       g = 10 m/s2
       Let 'h' be the height of the tower.
       Using the third equation of motion,
       v2   u2 = 2gs
       202   0 = 2 x 10 x h
       h = 400 / 20 =20 m

13.  Total time of journey = 6 s
       g = 10 m/s2
       (i) Let 'H' be the greatest height.
       Time of ascent, t = 6/2 = 3 s,
       For ascent, initial velocity, u = 0
       Using the second equation of motion, 
       H = ut + (1/2) gt2
       H = 0 + 1/2 x 10 x 32  = 45 m
       (ii) Let u' be the initial velocity.
       Final velocity, v = 0
       Using the third equation of motion,
       v2 - u2 = 2gH
       v2 - 0 = 2 x 10 x 45  , v2 = 900
       v = 30 m/s

14.  Initial velocity, u = 20 m/s
       Time, t = 2s
       g = 10 m/s2
       Maximum height reached in 2s, H = (1/2) gt2
       H = 1/2 x 10 x 22 = 20 m

15.  (a) Height, s = 80m
       g = 10 m/s2
       Using the second equation of motion,
       S = ut + (1/2) gt2
       80 = 0+ 1/2 x 10 x t2
       t 2 = 16
       t = 4s
       (b) Let 'v' be the velocity on reaching the ground.
       Using the third equation of motion,
       v2 - u2 = 2gH
       v2 - 0 = 2 x 10 x 80
       v2 = 1600
       v = 40 m/s

16.  Time t = 2.5
       g = 9.8 m/s2
       Height, H = (1/2) gt2
       H = 1/2 x 9.8 x 2.52
       H = 30.6 m

17.  Initial velocity, u = 49 m/s
       g = 9.8 m/s2
       (i) Let H be the maximum height attained.
       At the highest point, velocity = 0.
       Using the third equation of motion,
       v2 - u2 = 2 x g x H
       0 - 492 = 2 x -9.8 x H
       H = 49/ 19.6 = 122.5 m
       (ii) Total time of flight is given by t = 2u/g
        t = 2 x 49 / 9.8 = 10 s
18.   Initial velocity u = 0
        Time t = 4 s
        g = 10 m/s2
        Let 'H' be the height of the tower.
        Using the second equation of motion,
        H = ut + (1/2) gt2
        H = 0 +  1/ 2 x 10 x 42 = 80 m
19.   (i) Time t =20 s
        g = 10 m/s2
        Let 'D' be the depth of the well.
        Using the second equation of motion,
        D = ut + (1/2) gt2
        D = 0 + 1/2 x 10 x 202 = 2000 m
        (ii) Speed of sound = 330 m/s
        Depth of well = 2000 m
        Time taken to hear the echo after the pebble reaches the water surface = Depth/speed
        = (2000/330) s = 6.1 s
        Time taken for pebble to reach the water surface = 20 s.
        Therefore, the total time taken to hear the echo after the pebble is dropped = 20 + 6.1 = 21.6 s.

20   Let x be the height of the tower.
       Let h be the distance from the top of the tower to the highest point.
       Initial velocity u = 19.6 m/s
       g = 9.8 m/s2
       At the highest point, velocity = 0
       Using the third equation of motion,
       v2 - u2 = 2gh
        -(19.6) 2 = 2 x -9.8 x h
        h = 19.6 m
        If the ball takes time t1 to go to the highest point from the top of building, then for the upward
        journey from the relation, v = u - gt,
        0 = 19.6 - 9.8 x t1 = 2s
       (ii) Let us consider the motion for the part (x+h)
       Time taken to travel from highest point to the ground = (5 - 2) = 3s
       Using the equation s = ut + (1/2) gt2
       We get, (x + h) = 0 + 1/2 x 9.8 x 32
       (x + 19.6) = 44.1 m
        x = 44.1 - 19.6 = 24.5 m
       Thus, height of the tower = 24.5 m
       (iii) Let v be the velocity of the ball on reaching the ground.
        Using the relation, v = u + gt
        We get: v = 0 + 9.8 x 3 = 29.4 m/s