18. AREA OF TRAPEZIUM AND POLYGON
Ex 18B
Q1.
Answer.
Area of quadrilateral ABCD = (Area of △ ADC) + (Area of △ ACB)
= (1/2 x AC x DM) + (1/2 x AC x BL)
= [(1/2 x 24 x 7) + (1/2 x 24 x 8)] cm2
= (84 + 96) cm2
= 180 cm2
Hence , the area of the quadrilateral is 180 cm2
Q2.
Answer.
Area of quadrilateral ABCD = (Area of △ ABD) + (Area of △ BCD)
= (1/2 x BD x AL) + (1/2 x BD x CM)
= [(1/2 x 36 x 19) + (1/2 x 36 x 11)] m2
= (342 + 198) m2
= 540 m2
Hence , the area of the field is 540 m2
Q3.
Answer.
Area of pentagon ABCDE = (Area of △ AEN) + (Area of trapezium EDMN) + (Area of △ DMC)
+ (Area of △ ACB)
= (1/2 x AN x EN) + (1/2 x (EN + DM) x NM) + (1/2 x MC x DM)
+ (1/2 x AC x BL)
= (1/2 x AN x EN) + (1/2 x (EN + DM) x (AM - AN)) +
(1/2 x (AC - AM) x DM) + (1/2 x AC x BL)
= [(1/2 x 6 x 9) + (1/2 x (9 + 12) x (14 - 16)) + (1/2 x (18 - 14) x 12)
+ (1/2 x 18 x 4) cm2
= (27 + 84 + 36 ) cm2
= 171 cm2
Hence , the area of the given pentagon is 171 cm2
Q4 .
Answer.
Area of hexagon ABCDEF = (Area of △ AFP) + (Area of trapezium FENP) + (Area of △ ALB)
= (1/2 x AP x FP) + (1/2 x (FP + EN) x PN) + (1/2 x ND x EN)
+ (1/2 x MD x CM) + (1/2 x (CM + BL) x LM) + (1/2 x AL x BL)
= (1/2 x AP x FP) + (1/2 x (FP + EN) x (PL + LN)) +
(1/2 x (NM + MD) x CM) + (1/2 x MD x CM) +
(1/2 x (CM + BL) x (LN + NM)) + (1/2 x (AP + PL) x BL)
= 265 cm2
Hence , the area of the given hexagon is 265 cm2
Q7 .
Answer.
From the right triangles ABC and HGF ,we have:
AC2= HF2 = {(52) - (42)} cm
(25 - 16) cm = 9 cm
AC = HF = √9 cm = 3 cm
Area of the figure ABCDEFGH = (Area of rectangle ADEH) + )Area of △ABC) + (Area of △HGF)
= (Area of rectangle ADEH) + 2 (Area of △ABC)
= (AD x DE) + 2 (Area of △ABC)
= {(AC + CD) x DE} + 2 (1/2 x 4 x 3) cm2
= (56 + 4) cm2
= 68 cm2
Ex 18B
Q1.
Answer.
Area of quadrilateral ABCD = (Area of △ ADC) + (Area of △ ACB)
= (1/2 x AC x DM) + (1/2 x AC x BL)
= [(1/2 x 24 x 7) + (1/2 x 24 x 8)] cm2
Q2.
Answer.
Area of quadrilateral ABCD = (Area of △ ABD) + (Area of △ BCD)
= (1/2 x BD x AL) + (1/2 x BD x CM)
= [(1/2 x 36 x 19) + (1/2 x 36 x 11)] m2
Q3.
Answer.
Area of pentagon ABCDE = (Area of △ AEN) + (Area of trapezium EDMN) + (Area of △ DMC)
+ (Area of △ ACB)
= (1/2 x AN x EN) + (1/2 x (EN + DM) x NM) + (1/2 x MC x DM)
+ (1/2 x AC x BL)
= (1/2 x AN x EN) + (1/2 x (EN + DM) x (AM - AN)) +
(1/2 x (AC - AM) x DM) + (1/2 x AC x BL)
= [(1/2 x 6 x 9) + (1/2 x (9 + 12) x (14 - 16)) + (1/2 x (18 - 14) x 12)
+ (1/2 x 18 x 4) cm2
Q4 .
Answer.
Area of hexagon ABCDEF = (Area of △ AFP) + (Area of trapezium FENP) + (Area of △ ALB)
= (1/2 x AP x FP) + (1/2 x (FP + EN) x PN) + (1/2 x ND x EN)
+ (1/2 x MD x CM) + (1/2 x (CM + BL) x LM) + (1/2 x AL x BL)
= (1/2 x AP x FP) + (1/2 x (FP + EN) x (PL + LN)) +
(1/2 x (NM + MD) x CM) + (1/2 x MD x CM) +
(1/2 x (CM + BL) x (LN + NM)) + (1/2 x (AP + PL) x BL)
= [(1/2 x 6 x 8) + (1/2 x (8 + 12) x (2 + 8)) + (1/2 x (2 + 3) x 12)
+ (1/2 x 3 x 6) + (1/2 x (6 + 8) x (8 + 2)) + (1/2 x (6 + 2) x 8)] cm2
= (24 + 100 + 30 + 9 + 70 + 32 ) cm2
+ (1/2 x 3 x 6) + (1/2 x (6 + 8) x (8 + 2)) + (1/2 x (6 + 2) x 8)] cm2
= (24 + 100 + 30 + 9 + 70 + 32 ) cm2
Q7 .
Answer.
From the right triangles ABC and HGF ,we have:
AC2= HF2 = {(52) - (42)} cm
(25 - 16) cm = 9 cm
AC = HF = √9 cm = 3 cm
= (Area of rectangle ADEH) + 2 (Area of △ABC)
= (AD x DE) + 2 (Area of △ABC)
= {(AC + CD) x DE} + 2 (1/2 x 4 x 3) cm2
= (56 + 4) cm2
= 68 cm2